Comparison of Test Methods for Strength Characterization of Thin Solar Wafer
نویسندگان
چکیده
The Photovoltaic industry still tends towards thinner wafers with larger area leading to higher breakage rate in production processes. Strength characterization is needed in order to understand the fracture process and to optimize process steps. In this work different methods to measure the strength of photovoltaic wafer are presented and performed. Due to large deflection in experiment non-linear numerical methods must be used for strength evaluation. Besides the large influence of thickness variation it was found that the 4-point bending test and the ballon-ring test are appropriate test methods. In twist test calculating reliable fracture stress values in comparison to the fracture behavior was more difficult. This test method seems to be less suitable for strength characterization.
منابع مشابه
Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study
A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...
متن کاملSynthesis and Characterization of Mechanical Behavior and Thermal Shock Resistance of Macro-Porous SiC Solar Absorber
The concentrated solar power (CSP) is one of the renewable energy sources in which solar irradiation heat energy will be used in a steam turbine to generate electrical grid. Solar radiation is absorbed by a solar receiver reactor on the surface of a porous solar absorber. In this survey, synthesis and mechanical/thermal characterization of micro-porous silicon carbide (SiC) absorber to be used ...
متن کاملCombined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells
Related Articles Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells Appl. Phys. Lett. 102, 093107 (2013) Influence of back contact roughness on light trapping and plasmonic losses of randomly textured amorphous silicon thin film solar cells Appl. Phys. Lett. 102, 083501 (2013) Spatially resolved electrical parameters of silicon wa...
متن کاملEnergy Gap Demeanor for Carbon Doped with Chrome Nanoparticle to Increase Solar Energy Absorption
Novel method doped carbon with nanoparticle Cr2O3 and thin film has been studied in much thought in wavelength range, the doping can help new excellent physical and chemical properties for carbon, this application has a semiconductor feature. Nanocomposite thin film deposited on copper and glass substrates have been created by utilizing Spray Pyrolysis method. The prec...
متن کاملCharacterization of Thin Films for Solar Cells and Photodetectors and Possibilities for Improvement of Solar Cells Characteristics
Faced with an alarming increase of energy consumption on one side, and very limiting amounts of available conventional energy sources on the other, scientists have turned to the most promising, renewable energy sources. Possibilities for the application of solar systems based on photovoltaic conversion of solar energy are very wide, primarily because of their relatively low cost and very import...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007